

Think small to deliver big
Approaching design and delivery in small batches

Delivering software is hard, there’s no doubt about it. And that fact is often, if not
always, underestimated. Even setting aside internal or external dependencies, legacy
or technology constraints, known unknowns – or the infamous unknown unknowns – it’s

often made exponentially harder by teams with good intentions trying to design the
perfect solution long before a single line of code is written. In this paper, we look at how
to address this paradox, exploring the benefits of starting small to ultimately build big;
why this is difficult to do in practice, how to identify opportunities to break down bigger

problems, and practical approaches to avoid failure.

A white paper by Rob Smith and Simon Walder

2 Think small to deliver big

Introduction 3

Starting small... it’s not as easy as it sounds 4

So, what can you do? 6

Incremental delivery 8

Fostering delivery success 10

Incremental thinking and the danger of the MVP 12

Conclusion 15

Want to discuss how to think small to deliver big? 16

Contents

3scottlogic.com

Introduction
IT projects, like engineering projects, were traditionally delivered in large batches
following a Waterfall approach. Before the advent of DevOps automation, long,
complex and manually intensive test and release cycles dictated that systems be
changed as infrequently as possible. Therefore, to minimise and eliminate the
cost of change it was important to “get it right first time”. An admirable, albeit
impossible, aspiration.

In this context, Waterfall and other similar project
management variants aimed to understand the whole
problem before delivering the solution, ideally in a
single large batch, removing all uncertainty from the
process before embarking on the next sequential
phase of the project, and incurring the release
overhead only once.

However, large batches generate numerous issues,
and in recent years a number of new approaches have
risen to prominence based on small-batch delivery.
These were explicitly designed to avoid the problems
of their predecessors and provide the opportunity to
experiment and learn, reduce lead times, and avoid
scope bloat.

In theory, delivering in small batches and working in
an Agile way provides a significantly improved return
on investment (ROI) based on early and regular
release of value, and enables teams to home in on
the simplest possible solution to meet the user need.
However, evidence suggests that although things
have improved significantly over recent years, many
projects are still drawn into traditional, destructive
big-batch thinking.

There are many reasons why this may be the case, but
anecdotally it appears that project teams struggle
with the decomposition of problems, and – as a direct
consequence – more specifically with uncertainty
resolution and incremental delivery.

As a consultancy, we work with our clients to help them
solve their problems and are invariably approached
with a comprehensive solution already in mind. This
is perfectly understandable for a variety of reasons:
often it’s a problem that is already present and has
been discussed internally many, many times; nothing
comes for free, and usually there’s a requirement to
specify the output in order to secure a budget; and
ultimately, people just like to solve problems.

Breaking this habit and starting small simplifies the
task at hand and allows for both direct and indirect
value to be realised quickly. Direct value being, for
example, working software that resolves the problem
in incremental steps. Indirect value being the removal
of uncertainty, gaining new insights, and potentially
ripping something up and starting again. The key is to
understand that you are on a journey and not to overly
focus on the destination. You should focus instead on
the steps on this journey, how you plan to realise value,
and, importantly, what value looks like.

This paper looks at the challenge of delivering in
small steps. It looks at resolution of uncertainty and
at incremental delivery, and provides guidance
on practical approaches to achieving the desired
outcomes. It also looks at the specific challenges of
the minimum viable product (which, in the wrong
hands, simply becomes itself a large batch) and
system replacement (intuitively always a large batch).

Release 1 Release 2 Release 3

Released investment

Incremental Waterfall

4 Think small to deliver big

Google is awash with advice and articles espousing
the virtue of Cloud, DevOps, Agile; on how such
things can help organisations succeed in their digital
transformations – and with good reason, as there’s
some solid reasoning and evidence behind them
all. However, the application of these new services
and ways of working does not automatically lead to
success. The problem? It’s in the mindset – the way you
think about the problem an IT project is intended to
solve.

Thinking small to deliver big is the mindset you need,
and it’s not as straightforward as it sounds.

As problems are discussed over time, usually with an
ever-growing audience, they tend to expand rather
than contract. As the problem grows, the perceived
benefit of resolving everything up-front grows,
aided and abetted by a belief that specifying the
complete solution will help identify big-batch budget
efficiencies. All discussion, whether directly relevant or
not, promotes learning and exploration, so we are not
dismissing it as wrong or a waste of time. However, the
risk is that all of this up-front discussion of the problem
can also generate and reinforce preconceived ideas
that are hard to shake, resulting in a solution that is
difficult and inefficient to deliver.

Often problems in one area of an organisation are
reflected in another, prompting the inference that
there is benefit in solving both together. However, the
old adage ‘A bird in the hand is worth two in the bush’
could not be more relevant; while problems might
appear to be the same, they are often subtly different,
with each area having different processes, data, KPIs
and drivers. With each area feeding in their subtly
different requirements – that must all be met – the size,
scope and complexity of the problem grows.

Invariably, this overcomplication leads to rounds of
meetings and discussions. Other problems come to
the fore, and often the same people are involved in
resolving them. The discovery phase bloats, people
become spread thin, and distractions mount; decisions
take longer to make, which further compounds delays.
This is a self-perpetuating vicious cycle.

As time passes, the impact on the organisation
intensifies. The need to resolve the remaining
uncertainties mounts and delivery pressure is applied,
with original deadlines being cited. The problem has
been discussed at length, and so there is a widespread
perception that it must be well understood; this
perception increases the pressure to get delivery
underway, leading to poor decision-making.

Starting small... it’s not as
easy as it sounds
IT projects continue to fail – regardless of improvements in technology, our
understanding and appreciation of it, improvements in software development
practices, tooling designed to make things simpler, and agile methodologies like
Scrum.

scottlogic.com

As a problem grows, so do the number of
dependencies. These can come in many forms, from
softer dependencies such as people’s time, to harder
ones such as the platform to be used. Each of these
dependencies has its own needs that can cause drag,
delays and sometimes halt things altogether.

Of course, one of the main reasons why
overcomplication happens is simple human nature.

People like to be People Pleasers. This can be for a
variety of reasons: being the good corporate citizen
(“If we do this, then it will solve problems for all”);
or the fear of saying no (“I don’t want to be seen as
obstructive or negative or not a team player”); or
being seen as the person who can deliver (“I’ll deliver
this, and everyone will be happy (with me)”).

People like to solve problems and design solutions.
This is especially true of those who have a wealth
of experience; it‘s very easy to draw parallels with
previous problems and solutions and dive right in.
Experience should absolutely be used to inform
the design of a solution – but not by trying to find a
shortcut to the destination. Instead, it’s vital to follow
the steps of the journey, starting small to deliver big.

5

6 Think small to deliver big

What starting small means is that you focus on the
journey over the solution itself: you break down the
problem into smaller steps; you look at how those
steps fit together and in what order; you quantify the
value of each; and you understand the dependencies,
how to remove them, and when they could be safely
reintroduced.

Essential is an appreciation that there are no wrong
answers, only new insights to gain. This sounds
dangerous and expensive; but if your steps are small,
then so is the risk and cost.

Understanding the journey

It’s easy in theory to talk about the journey to a
solution, but the route seldom seems simple at
the outset. Before you get started, it is essential to
define what ultimate success looks like, with a clear
understanding of value.

Once in the iterative cycle of implementation, it can be
relatively straightforward to understand the value of a
particular release. But early in the project, this can be
less intuitive.

The problem during discovery is where to start and
how much work is required before commencing
implementation. Focusing on absolute value is
difficult, as many of the questions that need to be
answered don’t appear to directly correlate to value.
“How do we improve customer service” is a little
abstract when the question at hand is focused on
technology selection, architectural choices or other
similar uncertainties.

Large-batch thinking provides clear guidance on
when and how to resolve design uncertainty (i.e. at the
beginning), but delivery in small batches allows many
design activities to take place continually throughout
the project. This is one of the benefits of Agile: that it
provides additional options for uncertainty resolution
beyond mere analysis, options that encourage
learning and shorten lead times.

Nevertheless, some key uncertainties must still
be addressed at the start, even when delivering
incrementally, before they become major issues. While
it may be easy to refactor a method, it is unlikely to
be as easy to make changes during delivery to the
architecture, technology platform or UX design.

Addressing uncertainty

Value is accrued during Discovery through the
resolution of sufficient uncertainty to enable the
project to move ahead into implementation with the
confidence that it won’t be derailed at a later date
by a showstopper; particularly one that should have
been addressed earlier.

To provide focus to the team and optimise the journey,
Discovery can be approached in short iterations.
It is essential not to overanalyse, and using ‘design
sprints’ should help. Each iteration should be focused
on a specific outcome: ‘deciding on technology’,
‘establishing a deployment pipeline’ or ‘completing
user research of initial flow’. Where necessary, these
can further be subdivided to give greater focus e.g.
technology performance, scalability, operational
overhead, training needs, and so on.

So, what can you do?
Starting small does not mean that you ignore the entirety of the problem. Nor
does it mean that you avoid speaking to end users or the wider business to really
understand the problem, or that you steer clear of discussing possible solutions.

7scottlogic.com

For example, you may need to: undertake user
research or identify appropriate technology; build a
web interface, an API or data store; source or build
a platform for hosting. Throughout, consider the
following:

Throughout, consider the following:

 - What needs further discussion and how do we drive
those discussions?

 - What will be challenging?

 - What will slow us down and stop us learning?

 - What can be done right now and what can be
deferred to later?

 - Is the work necessary as an up-front activity, or can
it be undertaken as part of the incremental journey?

 - When will the work be completed?

 - What does the logical order of these steps look like?

Wider horizons through iteration

A government department client of ours was
investigating how citizen information could
be easily shared between new digital services
and legacy systems via an Event Notification
Service (ENS). The client had already identified
user needs, explored constraints, measured
legacy on-boarding lead times, and produced a
conceptual architecture.

We were commissioned to deliver a proof of
concept (PoC) in six weeks to demonstrate
the viability of the department’s conceptual
architecture and intended technology choices
– choices based on preconceived ideas of how
the ENS would work. But it quickly became clear
to us that a much more flexible, extensible and
valuable solution was available to them.

In collaboration with the client, we went on an
iterative design journey punctuated by regular
demonstrations of working software – which
prompted discussion around which areas to
investigate next – which we again demoed,
prompting further discussion and further
investigation. So excited was the client by
progress that they extended our engagement by
three weeks to investigate even further.

From being a PoC around a specific technology
choice, the iterative journey supplied the client
with the design for a technology-agnostic,
self-service ENS with the potential to provide
far more value to the department than their
preconceived solution had ever envisaged.

8 Think small to deliver big

Incremental delivery refers to the approach by which a
system is delivered in small batches ordered according
to business value. Each batch should be complete
and testable and deliver value (ideally) independent
of other batches. In an ideal world, analysis and
design are undertaken as part of the process and the
architecture is allowed to emerge, but we don’t live in
an ideal world and this is seldom a sensible option.

The theory, and ideally the practice, of incremental
delivery is to start with the simplest possible solution
and to layer on complexity. The ruthless focus on value
and simplicity should ensure that the optimum solution
is developed for the investment, avoiding the nasty
problem of scope bloat associated with Waterfall.
However, perhaps more importantly, incremental
delivery provides a mechanism with which to break
down big complex problems into smaller batches.

A focus on value

Devising an incremental strategy requires a continual
focus on value. It is important to have an idea of the
ultimate solution, but, as discussed earlier, the journey
is more important than the destination; and of course,
the destination may change along the way as ideas
are implemented and tested, and learning is applied.

By focusing on value, it is usually possible to fragment
a solution by audience (data) or function, or both
in combination. Asking the question, “Where will
the maximum value accrue?” will typically lead to
a specific subset of the user base or a part of the
business process, which can then be implemented as
an incremental step.

Each increment should offer clear value in itself, but
it may not be possible to accrue that value without
combining it with others to create a releasable
increment.

It may also be necessary to include functionality or
“workarounds” that will not form part of the final
solution. Examples of this include manual processes
and integrations with old systems to facilitate parallel
running.

For example, a previous client was launching a
new vehicle insurance product, and this is a broad,
multifaceted problem; the underwriting rules alone
become exponentially complicated as demographic
information and vehicle options are added. However,
from an incremental perspective there are several
options, the obvious one being to look at the largest
demographic group (i.e. the one containing the most
potential customers); but other, potentially better,
options exist.

Launching a new product always represents a risk,
and therefore a more appropriate strategy may
be to look at the easiest, least costly increment
to implement: the demographic/vehicle type
combination with the least complex underwriting
rules. In this way, it may be possible to launch the
product in a very short time to test the market and
justify further investment.

Incremental delivery
Once the key uncertainties are resolved and there is a clear understanding of the
project foundations, it’s time to think about the journey through to the solution.

9scottlogic.com

An example from retail

A number of years ago, one of this paper’s
authors was engaged by a retailer at very short
notice. They were planning a new product
launch a month hence, but had been beaten
to market by a competitor with a very similar
offering. Their challenge was how to launch as
quickly as possible before the market share was
significantly eroded.

When the project was reviewed, it became
apparent that there were two major blockers:
the functionality to prevent fraud, and the
integration of availability checking in the
retailer’s point of sale system. Focusing on value,
it became apparent that launching the product
was an order of magnitude more valuable
than the potential cost of fraud (working using
standard fraud metrics). Moreover, it was
possible to provide an in-store tool to check
availability, which – although more time-
consuming for sales staff – was not a sufficient
reason to stop go-live.

The new product was launched within a week,
with the additional functionality added as later
increments. The market share was captured and
the return on investment of the interim solutions
was in the region of 20x.

In the insurance example, the insurer launched a
product for over 25s with no motoring convictions,
who were driving low insurance group commercial
vehicles – commercial vehicle insurance being the new
specialist insurance product. When the product was
launched, the website provided a ring-back facility
to anyone who fell outside of the restricted criteria,
providing all users with a “complete” customer journey
and allowing the call centre to upsell other products.

Discussed in more detail later, the MVP in this instance
was of course very small and was deployed quickly at
a fraction of the expected investment. Once live, this
provided valuable feedback on usage demographics
and buyer behaviours, which were incorporated into
the prioritisation of further increments (over 20s,
multi-driver, heavier vehicles etc.).

This also provides an example of leveraging existing
processes to enable systems to be deployed before
they are complete, providing an early return on
investment and reducing overall risk. Here the balance
is between the cost of the “workaround” (the call-back
facility) and the value of the early launch.

10 Think small to deliver big

Fostering delivery success
The new mindset will greatly increase the potential for your project to be
successful, but it is not a silver bullet. Here is further advice on ways you can foster
delivery success.

Keep things simple

As previously mentioned, focusing on the
destination lends itself to a preconceived
solution, overcomplication and delays. Keeping
things simple promotes agility and the rapid
realisation of value. Most importantly, it allows
you to deliver working software, and drive
conversation and learning.

Do one thing at a time

In the modern world and workplace, it’s easy
to get distracted and disappear down a rabbit
hole, especially when the distraction has merit.
It’s important to capture these distractions, but
agree to look at them later. Focus on the task at
hand and prioritise the distractions as part of
the next round of planning.

Demonstrating something
drives conversation
A key benefit of the incremental approach is feedback
and learning. A picture paints a thousand words and
the sooner you can put something in front of users,
problem owners or stakeholders, the better. Taking a
single step or simple requirement and turning it into
something that can be demonstrated drives learning
and conversation.

The team learns from doing it. During the build,
they ask questions and seek clarifications, not just
from external sources but from each other. This
fosters a shared understanding and good working
relationships.

The users, problem owners and stakeholders see
how their requirements have been translated by the
team. This promotes discussion on what has been
built and demonstrated, leading to new insights and a
better understanding which informs decision-making
around future increments. Sometimes, it can lead to a
tangential discussion, helping to identify an adjacent
opportunity.

Tips and tricks – avoiding
the traps

11scottlogic.com

Stop trying to do things
perfectly

There is a time and place for perfect (or as
reasonably close as is sensible to attain),
especially as a solution begins to mature.
Nobody wants to continually revisit work due
to issues with quality or operability. At the
beginning, things just need to be ‘good enough’
– the learning from delivering a thing and the
discussion facilitated through demonstration
holds greater value than it being production
ready. (However, this is not an excuse for sloppy
work or ignoring best practice!)

Stop trying to please
everyone

Successful delivery involves a certain amount of
compromise and pragmatism, but sometimes
an external agenda may be to the detriment of
that success. Accept that you will need to make
decisions that someone won’t agree with. Don’t
be dismissive, and do capture. “We won’t do this
now, but let’s discuss and maybe we can include
it later.”

Tactical vs strategic

Beware, here be dragons.

By starting small, you are making an active
decision to demonstrate quickly and often, to
promote learning and discussion, and to build
iteratively towards incremental delivery. This
can mean choosing one direction or technology
over another because it’s easy, simple and quick
(Tactical). Nothing comes for free, and pros and
cons need to be weighed up; “easy, simple and
quick” may offer short-term benefits, but not be
the right strategic decision for a business.

If you are lucky, the choice between tactical
vs. strategic can be made quickly and by an
individual, or small agreeable cohort. On
average, this is not the case and can be a
minefield to navigate. Part of any discussion
here should be the benefit of maintaining
momentum and how that outweighs waiting
on a decision, or the yearning to discover a
panacea. Once you have started, it’s often more
expensive to have a team spinning wheels rather
than learning and resolving uncertainties to
inform decisions. The question is “What can we
do now to keep moving without making a future
change prohibitively expensive?”

Challenge everything

Ask simplifying questions every day. It’s easy
to get caught up in the conversation, on the
benefits reaped once the solution is delivered,
and how that solution will look. Care must be
taken to keep thinking about the steps on the
journey. When things are proposed, decisions
are being made or planning is in progress, ask
yourself the following questions::

 - Is a solution being proposed without
understanding the journey?

 - Do we need this? And if so, do we need it
right now?

 - What is the short term and long term impact
of postponing, and conversely if we do look
at it now, what’s the benefit?

12 Think small to deliver big

In these cases, the release is viewed at the outset as
a single batch, and therefore subject to many of the
issues experienced in Waterfall. This is particularly
true when implementing replacement systems, which
is discussed below.

The problem in thinking about an MVP is very similar
to that of Waterfall delivery in that the solution very
quickly becomes a proxy for value, and the focus
turns to the functionality the product “should” contain.
Customers of the system see the MVP as a “single bite”
and aim to ensure that the bite includes everything
that they believe they have the appetite for.

Another common MVP-related issue is differing
understanding of what the term means in a particular
context. One person’s anticipated MVP can differ
quite considerably from another’s, and if one is the
customer and the other the supplier this can lead to
significant frustration on both sides. This, of course,
can easily be addressed by the development of a
detailed specification, but that’s precisely what we’re
trying to avoid.

The solution is similar to that described above. The
incremental journey, which focuses on simplicity
throughout, will naturally provide an optimal journey
to the optimal MVP. Importantly, the journey towards
the MVP is more important than the destination – if
each incremental step is correct and in its simplest
form, then the MVP will naturally be reached and
recognised as part of the process. Also, it is much
easier to answer the question, “What more is required
in order to launch the product?” if the physical product
is available, rather than simply a set of descriptive
artefacts.

Replacement systems are large
batches?

Incremental delivery clearly lends itself to the delivery
of new systems. However, when a legacy system is to
be replaced, the opportunity is not as obvious. After
all, no value can be accrued until the existing system
has been replaced. Or can it?

Unsurprisingly, the answer again lies in the business
case for the replacement system, i.e. where will
value come from? The reality is that systems are
rarely replaced simply due to obsolescence, and the
overriding factor tends to be either high running costs
or a need to support new initiatives: better customer
service, omni-channel integration or improved
operational efficiencies. Often the reality is that the
value of the opportunities far outweighs the potential
cost savings, and therefore an incremental approach
can be taken to realising their value.

Consider the not entirely hypothetical situation in
which a police force needs to replace its aging crime
scene reporting system – a legacy platform – which
requires officers to record information at the scene
using their trusty notepad (pen and pencil, not tech),
and then transcribe the notes into the system at a
later date; a hugely inefficient process and a waste of
valuable time when the officers could be on the beat.

The ‘natural’ intuitive assumption is there is no
value in the new system until the old one has been
replaced, and therefore the new system has to cover
all eventualities. The range of crime scenes being
extensive, this leads to one huge batch. However, if we
focus on realising value through process optimisation
rather than focusing on the replacement system, the
picture looks quite different.

Incremental thinking and the
danger of the MVP
The minimum viable product (MVP) is a great idea: avoid scope bloat and aim to
launch the simplest solution possible that delivers value. However, the execution of
the MVP often defeats the aim.

13scottlogic.com

The proposed new system will provide officers with
tablets (tech not pharmaceutical) into which they can
record information directly (including the time-saving
options of photographs and audio recording). Even
by the most conservative estimates, this will save
officers over four hours per week, and thus, for a small
police force such as Manchester, the saving is circa
£18,000,000 per annum. But can a proportion of this
be achieved incrementally?

Adhering to the approach discussed above, we can
start by segmenting the value. Given that the aim is
efficiency, the maximum incremental value is gained
by focusing on the crime type on which most time is
spent: burglary! The logical first step is to record the
simplest form of burglary: burglary on a single premise
with no witnesses and no additional complexity. Next,
this can be extended to include witnesses and multiple
premises. While the value at this stage is limited, the
early increments provide the opportunity for feedback
and learning. It is also possible to test key technical
challenges such as security and integration with the
legacy system (to facilitate parallel operations).

Having completed a sufficiency of functionality to
support burglary reporting we can then move on to
the next increments: car theft, domestic violence,
fraud etc. Hopefully it is clear that once a small
number of crime types are addressed, significant
value can be released through parallel running of the
old and new systems, and importantly long before
we approach the crime types with low instances (e.g.
the implementation of salmon handling or queue
jumping) the system will address over 95% of all crimes
committed, thus releasing the vast majority of the
value long before the old system is retired.

It is not always possible to release a system early, but
that does not mean that significant value cannot be
gained from an incremental approach. The costs of
parallel running may be prohibitively high, or the new
business process may differ significantly from that
which is being replaced requiring that the first major
release be a large batch, but numerous options still
exist.

Deploying incrementally to a model office facilitates
testing, data migration, training, and business process
reengineering all to be undertaken in parallel with
development, significantly shortening time to value
and reducing risk. And, of course, working in this way
will help to identify the real MVP.

14 Think small to deliver big

The Student Loans Company is currently replacing
its core loan system. The aim is to provide a digital
customer-centric journey, which will make life
easier for students and significantly reduce the call
centre requirement. Broadly speaking, there are
two logical approaches to this: to break the system
into components, allowing teams to work in parallel
before a final big-bang integration; or to deliver
the system incrementally.

The component-based approach looks at
the system in three parts: apply, loan, repay.
Implementing each separately may look like
“thinking small” but each is large and complex in
isolation, giving three large batches followed by a
“super-batch” big-bang integration.

Importantly, evidence of progress within the
batches is limited as there are no value milestones.

Approaching the problem from an incremental
perspective, it is quickly evident that the largest
demographic group is also the simplest from an
implementation perspective. UK-based students
who qualify for a loan, go to a single university
and then get a job and repay the loan, represent a
significant population of the user base. Building for
this group first proves the end-to-end system, and
offers a clear value milestone for measurement.
Adding complexity to this first increment to cover
changes at university and employment quickly
provides a set of functionality that addresses the
majority of UK-based students.

Component-based vs incremental

Component-based approach

1. Apply 2. Loan 3. Repay

Incremental approach

1. Apply 2. Loan 3. Repay

Key

01

02

03

Increments

15scottlogic.com

Conclusion
Returning to our theme, Think Small to Deliver Big,
hopefully it is now clear that even the largest problems
can be broken down into smaller, simpler steps that
reduce complexity and risk, and deliver early value.

Early in the process, it is important to address
uncertainties: identify unknown unknowns and ensure
the journey won’t be derailed by gotchas. But this
should not itself become a big-batch activity. Think
about each area of uncertainty and address each in
short iterative bursts with clear measurement points.
Only undertake sufficient up-front activity to enable
delivery to commence with a degree of confidence.

To maximise the value from an iterative, small-batch
approach, deliver incrementally. Focus on where true
lies: customers, functionality, service. Don’t let the
ultimate solution blind you, and enjoy the journey.

Want to discuss how to
think small to deliver big?

At Scott Logic, we design and build software that
transforms the performance of some of the world’s
biggest and most complex organisations. By taking
an incremental approach, we help our clients to
reduce risk and deliver early and on-going value.

If you’d like to discuss how your organisation can
adopt an incremental approach to designing and
delivering its products and services, we’re always
happy to chat.

To arrange a free consultation,
contact Rob Smith on:

+44 333 101 0020

sales@scottlogic.com

February 2020 © Scott Logic Ltd. All rights reserved.

3rd Floor, 1 St James’ Gate
Newcastle upon Tyne
NE1 4AD

+44 333 101 0020
scottlogic.com

